simple/dumb logarithmic conversion inquiry
it has been years given that I have done logs, I bear in mind something similar to this:
$$x^{\log_z(y)} = y^{\log_z(x)}$$
(where $z$ is the base) Is that proper? It does not appear so, given that
$$3^{\log_2(4)} \neq 4^{\log_2(3)}$$
Am I right because presumption? If I am, does
$$x^{\log_z(y)}$$
transform to anything conveniently?
We do have
$x^{\log _{z}y}=y^{\log _{z}x}$
due to the fact that
$(\log_{z}y)\log_{z}x=(\log_{z}x)\log _{z}y$.
The mathematical relationship is an equal rights
$3^{\log _{2}4}=4^{\log _{2}3}=9$.
If $\rm\:\ \ell\:X\ =\ \log_Z{X}\ \ $ after that $\rm\ \ell(X^{\:\ell\:{Y}})\ =\ \ell X\ \ell Y\ =\ \ell Y\ \ell X\ =\ \ell(Y^{\:\ell\: X})$
Or, without taking logarithms $\rm\displaystyle\ \ \: X^{\:\ell\:{Y}}\ \ =\ Z^{\:\ell\: X\ \ell\: Y}\ =\ Z^{\:\ell\: Y\ \ell\: X}\ =\ Y^{\:\ell\: X}$
Your last instance is a grandfather clause $\rm\ \ Y\ =\ Z^n\:$, $\rm \ $ yet it additionally has a straightforward straight evidence,
particularly $\rm\ \ \: X^{\:\ell\: Z^{\:n}}\ =\ X^n\ =\ Z^{\:\ell\: X^n}\ =\ Z^{n\:\ell\: X}\:$. $\:$ Yours is $\rm\: X = 3,\ Z = 2 = n$
Related questions