Calculate the fundamental group of the complement in $\mathbb{R}^3$ of

$$\{ (x,y,z) \ | \ y = 0 , \ x^{2} + z^{2} = 1\} \cup \{ (x,y,z) \ | \ z = 0 , \ (x-1)^{2} + y^{2} = 1\}.$$

**Note**: this space is $\mathbb{R}^{3}\setminus \{ \mbox{2 linked circles }\}$.

WLOG 2022-07-25 17:47:21
Source
Share